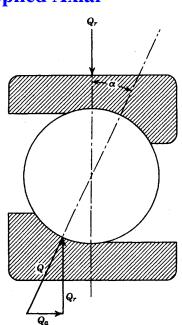
Example 5.1 Induced Ball Radial Load due to Applied Axial Load

Problem Statement

The 209 DGBB is subjected to a thrust (axial) load of 445 N per ball. What is the magnitude of the radial load induced in each ball assuming the contact angle^{*} is not changed by the application of load?


Problem Solution

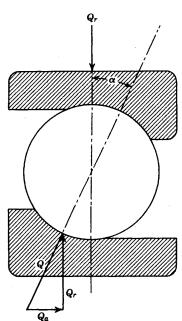
Ex. (3.1)
$$\alpha = 7^{\circ}25' = 7.417^{\circ}$$

Eq. (5.3)
$$Q_a = Q_r \tan \alpha$$

$$Q_r = \frac{Q_a}{\tan \alpha} = \frac{445}{\tan(7.417^\circ)} = 3419N$$

^{*}This assumption is not accurate in this case and is made only to illustrate a point.

Example 5.2 Normal Ball Load in Angular-Contact Ball Bearing Subjected to Applied Thrust Load


Problem Statement

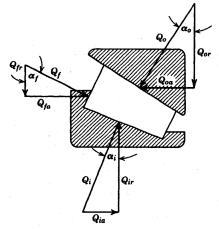
The 218 ACBB of Ex. 3.3 is subjected to a thrust (axial) load of 2225 N per ball. What is the magnitude of the normal load induced in each ball assuming the contact angle is not changed^{*} by the application of load?

Problem Solution

Ex. (3.3)
$$\alpha = 38^{\circ}54' = 38.9^{\circ}$$

Eq. (5.2) $Q = Q_a \sin \alpha$

$$Q = \frac{Q_a}{\sin \alpha} = \frac{2225}{\tan(38.9^\circ)} = 3543N$$


^{*}This assumption is not accurate in this case and is made only to illustrate a point.

Example 5.3 Induced Tapered Roller End-Flange Load due to Applied Axial Load

Problem Statement

A 90000 series steep angle TRB has the following dimensions:

 $\alpha_{i} = 22^{\circ}$ $\alpha_{o} = 29^{\circ}$ $\alpha_{f} = 64^{\circ} \text{ (with bearing axis)}$ D = 22.86 mml = 30.48 mm

If the most heavily loaded roller supports a thrust of 22,250 N, what is the magnitude of the maximum load on the guide flange (large end rib)? Compare this load with the maximum normal load on the cone.

Problem Solution

Eq. (5.14)
$$Q_f = Q_{ia} \frac{(\cot \alpha_i \sin \alpha_o - \cos \alpha_o)}{\sin(\alpha_o + \alpha_f)} = 22250 \frac{(\cot 22^\circ \sin 29^\circ - \cos 29^\circ)}{\sin(29^\circ + 64^\circ)} = 7245N$$

Fig. 5.3
$$Q_i = \frac{Q_{ia}}{\sin \alpha_i} = \frac{22250}{\sin(22^\circ)} = 59410N$$

3